Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Commun Signal ; 22(1): 177, 2024 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-38475811

RESUMO

BACKGROUND: The incidence of multiple myeloma (MM), a type of blood cancer affecting monoclonal plasma cells, is rising. Although new drugs and therapies have improved patient outcomes, MM remains incurable. Recent studies have highlighted the crucial role of the chemokine network in MM's pathological mechanism. Gaining a better understanding of this network and creating an overview of chemokines in MM could aid in identifying potential biomarkers and developing new therapeutic strategies and targets. PURPOSE: To summarize the complicated role of chemokines in MM, discuss their potential as biomarkers, and introduce several treatments based on chemokines. METHODS: Pubmed, Web of Science, ICTRP, and Clinical Trials were searched for articles and research related to chemokines. Publications published within the last 5 years are selected. RESULTS: Malignant cells can utilize chemokines, including CCL2, CCL3, CCL5, CXCL7, CXCL8, CXCL12, and CXCL13 to evade apoptosis triggered by immune cells or medication, escape from bone marrow and escalate bone lesions. Other chemokines, including CXCL4, CCL19, and CXCL10, may aid in recruiting immune cells, increasing their cytotoxicity against cancer cells, and inducing apoptosis of malignant cells. CONCLUSION: Utilizing anti-tumor chemokines or blocking pro-tumor chemokines may provide new therapeutic strategies for managing MM. Inspired by developed CXCR4 antagonists, including plerixafor, ulocuplumab, and motixafortide, more small molecular antagonists or antibodies for pro-tumor chemokine ligands and their receptors can be developed and used in clinical practice. Along with inhibiting pro-tumor chemokines, studies suggest combining chemokines with chimeric antigen receptor (CAR)-T therapy is promising and efficient.


Assuntos
Compostos Heterocíclicos , Mieloma Múltiplo , Humanos , Mobilização de Células-Tronco Hematopoéticas , Quimiocinas , Transdução de Sinais , Biomarcadores
2.
Blood Sci ; 5(4): 221-236, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37941914

RESUMO

Multiple myeloma (MM) is a malignant neoplasm characterized by clonal proliferation of abnormal plasma cells. In many countries, it ranks as the second most prevalent malignant neoplasm of the hematopoietic system. Although treatment methods for MM have been continuously improved and the survival of patients has been dramatically prolonged, MM remains an incurable disease with a high probability of recurrence. As such, there are still many challenges to be addressed. One promising approach is single-cell RNA sequencing (scRNA-seq), which can elucidate the transcriptome heterogeneity of individual cells and reveal previously unknown cell types or states in complex tissues. In this review, we outlined the experimental workflow of scRNA-seq in MM, listed some commonly used scRNA-seq platforms and analytical tools. In addition, with the advent of scRNA-seq, many studies have made new progress in the key molecular mechanisms during MM clonal evolution, cell interactions and molecular regulation in the microenvironment, and drug resistance mechanisms in target therapy. We summarized the main findings and sequencing platforms for applying scRNA-seq to MM research and proposed broad directions for targeted therapies based on these findings.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...